

Features

- Link lengths at 10G 10Km
- LC duplex connector
- Low power consumption <1.0W
- 0°C to 70°C operating temperature range
- Single +3.3V±5% power supply
- Digital Monitoring SFF-8472 compliant
- High sensitivity PIN photodiode and TIA
- Uncooled directly modulated DFB Laser with CWDM wavelengths

Applications

- 10GBASE-LR/LW 10G Ethernet
- 10GFC
- 8GFC

Standards

- IEEE 802.3ae
- SFF-8431 Rev 3.0
- SFF-8472 Rev 10.2
- 10GFC Rev 4.0
- FC-PI-4 Rev 7.0

The RTXM228-5XX 10Gigabit DFB laser with CWDM transceiver is designed to transmit and receive serial optical data links up from 8.5 Gb/s to 10.52 Gb/s data rate over 10km singlemode fiber. The Transceiver is compliant with SFF-8432, 10GFC, FC-PI-4, IEEE802.3ae and applicable portions of SFF-8431. Digital diagnostics functions are available via a 2-wire serial interface, as specified in SFF-8472.

Specifications

(tested under recommended operating conditions, unless otherwise noted)

Parameter	Symbol	Unit	Min	Тур	Max	Note
	Tra	nsmitte	r			
Nominal Wavelength	λ	nm	1271,1291,1311,1331, The confirmation of the else wavelength is according to the future study.		CWDM	
Wavelength Drift	$\Delta \lambda$	nm	-6.5		+6.5	
Side Mode Suppression Ratio	SMSR	dB	30			
Optical Output Power	Pav	dBm	-2.4		+5	1
Extinction Ratio	ER	dB	3.5			
Average launch power of OFF transmitter	P _{OFF}	dBm			-35	
Relative Intensity Noise	RIN	dB/Hz			-128	
Optical Return Loss Tolerance	ORLT	dB			12	
	R	eceiver				
Center Wavelength	λ	nm	1260		1610	
Average Receiver Power	Pavg	dBm	-14.4		+0.5	2
Receiver Sensitivity (OMA)	RSENSE1	dBm			-12.6	2
Stressed Receiver Sensitivity (OMA)	R _{SENSE2}	dBm			-10.3	3
Receiver Reflectance	Rrefl	dB			-12	
Assert LOS	LOSA	dBm	-30			
De-Assert LOS	LOSD	dBm			-15	
LOS Hysteresis		dB	0.5			

Note 1: Demand of customer

Note 2: Sensitivity for 10G PRBS 2³¹-1 and BER better than or

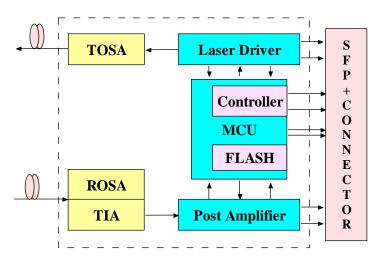
equal to 10E-12

Note 3: The stressed sensitivity value in the table are for system level BER measurements which include the effects of CDR circuit.

Ordering Information

	Specifications									
Part No.	Package	Data	Laser	Optical Power	Detector	Sensitivity	Тор	Reach	Other	Application
	rackage	rate(Gb/s)	Lasei	(dBm)	Detector	(OMA) dBm	iθp	(km)	ounci	
RTXM228-5XX	SFP+	8.5	CWDM	24~5	DIN	< 12 C	0~70 ℃	1.01/m	DDM	10GBASE-LR/LW
KTAM228-5XX	SFP+	~10.52	DFB	-2.4 ~+5	PIN	< -12.6	0~70°C	10km	DDM	8G/10GFC

Part NO.	Wavelength(nm)				
	min	type	max		
RTXM228-501	1263.5	1271	1278.5		
RTXM228-502	1283.5	1291	1298.5		
RTXM228-503	1303.5	1311	1318.5		
RTXM228-504	1323.5	1331	1338.5		

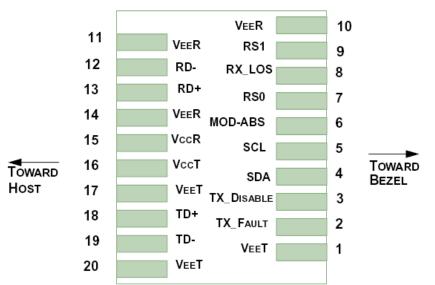

Absolute Maximum Ratings

Parameter	Symbol	Unit	Min	Max
Storage Temperature Range	Ts	°C	-40	85
Relative Humidity	RH	%	0	95
Supply Voltage	V _{CC}	V	-0.3	4.0

Recommended Operating Conditions

Parameter	Symbol	Unit	Min	Тур	Max
Operating Case Temperature Range	Tc	°C	0		70
Power Supply Voltage	Vcc	V	3.14	3.3	3.46
Bit Rate	BR	Gb/s	8.5		10.52
Bit Error Ratio	BER				10-12
Max Supported Link Length	L	km			10

Principle diagram

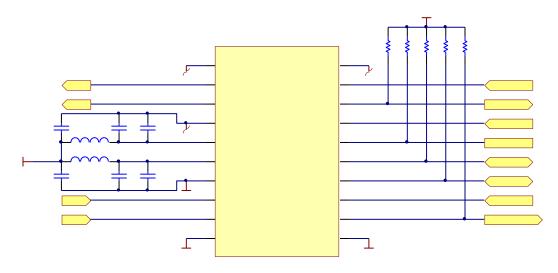


Electric Ports Definition

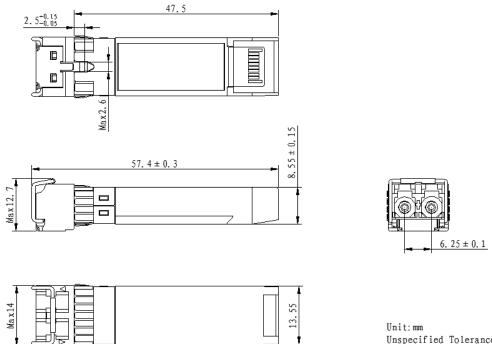
Parameter	Symbol	Unit	Min	Тур	Max	Note
Supply Voltage	V _{CC}	V	3.14	3.3	3.46	
Supply Current	Icc	mA			300	
	٦	Fransmitter	1			
Input Differential Impedance	R _{IN}	Ω	80	100	120	1
Differential Data Input Swing	V_{IN}	mVp-p	180		700	
Transmit Disable Voltage	V _{DIS}	V	2		V _{CCHOST}	
Transmit Enable Voltage	V _{EN}	V	V _{EE}		V_{EE} +0.8	
Transmit Fault Assert Voltage	V _{FA}	V	2.2		V _{CCHOST}	
Transmit Fault De-Assert Voltage	V _{FDA}	V	V _{EE}		V_{EE} +0.4	
		Receiver				
Differential Data Output Swing	V _{OD}	mVp-p	450	600	850	
Output Rise Time	t _{RISE}	ps	25			
Output Fall Time	t _{FALL}	ps	25			
LOS Fault	VLOSFT	V	2		V _{CCHOST}	
LOS Normal	V _{LOSNR}	V	V _{EE}		V_{EE} +0.8	

NOTE 1: Differential between TD+ / TD-

Pin function definitions



Pin Number	Symbol	Name	Description		
1,17,20	VeeT	Transmitter Signal Ground	These pins should be connected to signal ground on the host board.		
2	TX Fault	Transmitter Fault Out (OC)	Logic "1" Output = Laser Fault (Laser off before t_fault) Logic "0" Output = Normal Operation This pin is open collector compatible, and should be pulled up to Host Vcc with a $10k\Omega$ resistor.		
3	TX Disable	Transmitter Disable In (LVTTL)	Logic "1" Input (or no connection) = Laser off Logic "0" Input = Laser on This pin is internally pulled up to VccT with a 10 $k\Omega$ resistor.		
4	SDA				
5	SCL	Module Definition Identifiers	Serial ID with SFF 8472 Diagnostics Module Definition pins should be pulled up to		
6	MOD-ABS		Host Vcc with 10 k Ω resistors.		
7	RS0	Receiver Rate Select (LVTTL)	These pins have an internal $33k\Omega$ pull-down to		
9	RS1	Transmitter Rate Select (LVTTL)	ground. A signal on either of these pins will not affect module performance.		
8	LOS	Loss of Signal Out (OC)	Sufficient optical signal for potential BER $< 1 \times 10^{-12} = Logic$ "0" Insufficient optical signal for potential BER $< 1 \times 10^{-12} = Logic$ "1" This pin is open collector compatible, and should be pulled up to Host Vcc with a 10k Ω resistor.		
10,11,14	VeeR	Receiver Signal Ground	These pins should be connected to signal ground on the host board.		
12	RD-	Receiver Negative DATA Out (CML)	Light on = Logic "0" Output Receiver DATA output is internally AC coupled and series terminated with a 50Ω resistor.		
13	RD+	Receiver Positive DATA Out (CML)	Light on = Logic "1" Output Receiver DATA output is internally AC coupled and series terminated with a 50Ω resistor.		


	15	VccR	Receiver Power Supply	This pin should be connected to a filtered +3.3V power supply on the host board. See Figure 3.Recommended power supply filter
	16	VccT	Transmitter Power Supply	This pin should be connected to a filtered +3.3V power supply on the host board. See Figure 3.Recommended power supply filter
-	18	TD+	Transmitter Positive DATA In (CML)	Logic "1" Input = Light on Transmitter DATA inputs are internally AC coupled and terminated with a differential 100Ω resistor.
	19	TD-	Transmitter Negative DATA In (CML)	Logic "0" Input = Light on Transmitter DATA inputs are internally AC coupled and terminated with a differential 100Ω resistor.

Typical Application Circuit

Package Outline

Unspecified Tolerance: ± 0.2mm

Regulatory Compliance

Feature	Test Method	Performance
Electrostatic Discharge (ESD) to the Electrical Pins	MIL-STD-883C Method 3015.7	Class 1 (> 1500 Volts)
Electrostatic Discharge (ESD) Immunity	Variation of IEC 61000-4-2	LV 4(Air discharge :15KV;Contact discharge:8 KV) Performance criterion:B
Electromagnetic Interference (EMI)	CISPR22 ITE Class B EN55022 Class B FCC Class B	Compliant with standards
Immunity	IEC61000-4-3 Class 2 EN55024	Typically show no measurable effect from a 3V/m field swept from 80 to 1000MHz applied to the transceiver without a chassis enclosure.

