

Features

- Compliant to SFP+ MSA
- Fully RoHS Compliant
- All metal housing for superior EMI performance
- CDR with 9.95 to 11.3Gbps
- Cooled EML DFB Laser
- High sensitivity APD photodiode and TIA
- LC duplex connector
- Hot pluggable 20pin connector
- Low power consumption <2W
- -5[°]C to 70[°]C operating wide temperature range
- Single +3.3V±5% power supply
- Digital Monitoring SFF-8472 Rev 10.2 compliant
- Real time monitoring of: Transmitted optical power Received optical power Laser bias current Temperature Supply voltage

Applications

- 10G SONET&SDH
- 10GBASE-ZR/ZW
- 10G Fiber Channel

The CWDM-rated cooled EML laser based 10Gigabit SFP+ Transceiver is designed to transmit and receive serial optical data over single mode optical fiber with 70Km.

They are compliant with SFF-8431, SFF-8432, 10GFC Rev 4.0, and 10GBASE-ZR/ZW. The transmitter converts serial CML electrical data into serial optical data compliant with the IEEE 802.3ae standard. The receiver converts serial optical data into serial CML electrical data. Digital diagnostics functions are available via a 2-wire serial interface, as specified in SFF-8472.

(Tc=-5 $^{\circ}$ C to 70 $^{\circ}$ C and Vcc= 3.14 to 3.46V)

Parameter	Symbol	Unit	Min	Тур	Max	Note
	Transr	nitter				
Nominal Wavelength	λ	nm	1464.5		1617.5	
Center wavelength Spacing		nm	-6.5		6.5	
Side Mode Suppression Ratio	SMSR	dB	30			
Spectral Width(-20dB)	Δλ	nm			0.3	
Optical Output Power	Pav	dBm	0		4	
Extinction Ratio	ER	dB	8.2			
Average Launch Power of OFF Transmitter	POFF	dBm			-30	
Relative Intensity Noise	RIN	dB/Hz			-128	
	Rece	iver			•	
Center Wavelength	λС	nm	1260		1620	
Receiver Sensitivity@10.3125Gb/s	RSENS E	dBm			-24	1
Receiver Sensitivity at 70km @ 1471~1551nm	RSENS E	dBm			-21	2
Receiver Sensitivity at 70km @1571~1611nm	RSENS E	dBm			-20	2
Overload		dBm	-7			
Optical Return Loss		dB	27		-	
LOS Assert	LOSA	dBm	-36			
LOS De-Assert LOS	LOSD	dBm			-27	
LOS Hysteresis		dB	0.5		6	

Note 1: Measured at 1470-1610nm, ER>8.2dBm, PRBS 231-1 and BER better than or equal to 10E-12;

2: loopback using 70km fiber (SMF-28)@10.3125Gbps.

Ordering Information

Part No.			S	pecificatio	ns				Application
Part NO.	Package	Laser	Optical Power	Detector	Sensitivity	Temp	Reach	Other	
DTVM220 20V	SEP+	CWDM-rated	0 ~+4dBm	APD	< -24dBm	-5~70℃	70km	DDM	10GBASE-ZR/ZW
RTXM228-39X	355+	EML	U +4ubiii	APD	< -24ubiii	-5 /UC	/UKIII	CDR	10G Fiber Channel

Block diagram

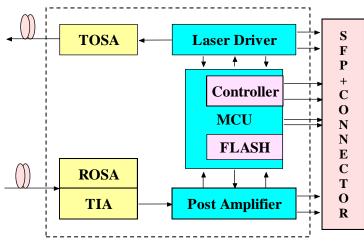


Figure 1.Transceiver functional diagram

Absolute Maximum Ratings

Parameter	Symbol	Unit	Min	Max
Storage Temperature Range	Ts	°C	-40	85
Relative Humidity	RH	%	0	95

Recommended Operating Conditions

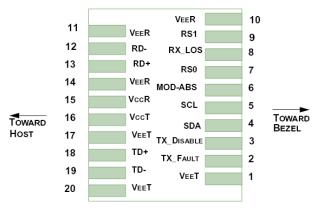
Parameter	Symbol	Unit	Min	Тур	Max
Operating Case Temperature Range	Tc	°C	-5		70
Power Supply Voltage	Vcc	V	3.14	3.3	3.46
Bit Rate	BR	Gb/s			11.3
Bit Error Ratio	BER				10-12
Max Supported Link Length	L	Km			70

Electric Ports Definition

Parameter	Symbol	Unit	Min	Тур	Max	Note
Supply Voltage	V_{CC}	V	3.14	3.3	3.46	

Power consumption	Por	W			2
	Transmitter				
Input Differential Impedance	R_{IN}	Ω	80	100	120
Differential Data Input	V_{IN}	mVp-p	150		1200
Transmit Disable Voltage	V_{DIS}	V	2		V _{CCHOST}
Transmit Enable Voltage	V_{EN}	٧	V_{EE}		V _{EE} +0.8
Transmit Fault Assert Voltage	V_{FA}	V	2		V _{CCHOST}
Transmit Fault De-Assert Voltage	V_{FDA}	V	VEE		V _{EE} +0.4
	Receiver				
Differential Data Output	V_{OD}	mVp-p	350		700
Output Rise Time	t_{RISE}	pS	25		
Output Fall Time	t_{FALL}	pS	25		
LOS Fault	V_{LOSFT}	V	2		V _{CCHOST}
LOS Normal	V_{LOSNR}	V	VEE		V _{EE} +0.4

Pin function definitions



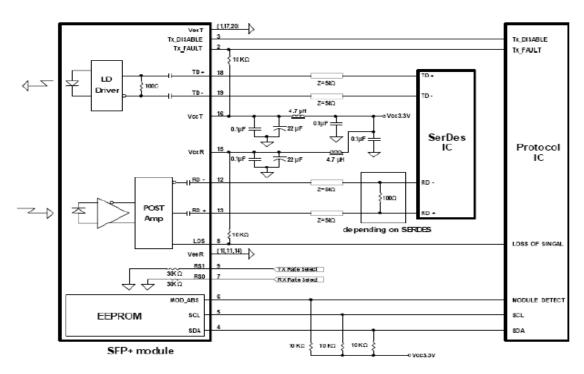
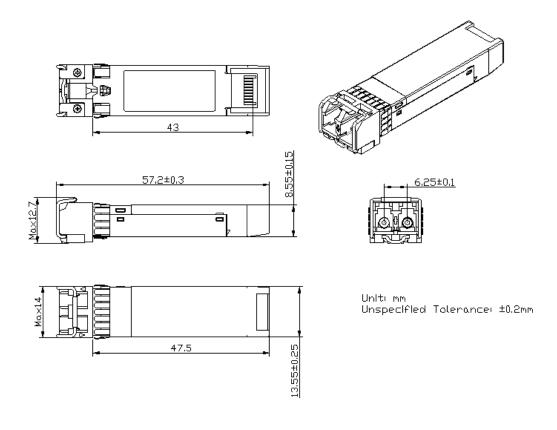

Figure 2.Pin function definitions

Table 1: Transceiver pin descriptions


Pin Number	Symbol	Name	Description
1,17,20	VeeT	Transmitter Signal Ground	These pins should be connected to signal ground on the host
, -, -			board.
			Logic "1" Output = Laser Fault (Laser off before t_fault)
2	TX Fault	Transmitter Fault Out (OC)	Logic "0" Output = Normal Operation
2	2 TX Fault Transmitter	Transmitter Fault Out (OC)	This pin is open collector compatible, and should be pulled
			up to Host Vcc with a $10k\Omega$ resistor.
2	TX	Transmitter Disable In	Logic "1" Input (or no connection) = Laser off
3	Disable	(LVTTL)	Logic "0" Input = Laser on

	WIZZO .		This pin is internally pulled up to VccT with a 10 $k\Omega$
			resistor.
4	SDA		Serial ID with SFF 8472 Diagnostics
5	SCL	Module Definition Identifiers	Module Definition pins should be pulled up to Host Vcc
6	MOD-ABS		with $10 \text{ k}\Omega$ resistors.
7	RS0	Receiver Rate Select (LVTTL)	These pins have an internal $30k\Omega$ pull-down to ground. A
	DC1	Transmitter Rate Select	signal on either of these pins will not affect module
9	RS1	(LVTTL)	performance.
			Sufficient optical signal for potential
			BER $< 1 \times 10^{-12} = \text{Logic "0"}$
8	LOS	Loss of Signal Out (OC)	Insufficient optical signal for potential
		5 to 1 to 2 to 2 to 1 to 1 to 1 to 1 to 1	BER $< 1x10^{-12} = \text{Logic "1"}$
			This pin is open collector compatible, and should be pulled
			up to Host Vcc with a $10k\Omega$ resistor. These pins should be connected to signal ground on the host
10,11,14	VeeR	Receiver Signal Ground	board.
			Light on = Logic "0" Output Receiver DATA output is
12	RD-	Receiver Negative DATA Out	internally AC coupled and series terminated with a 50Ω
		(CML)	resistor.
		Desciver Desitive DATA Out	Light on = Logic "1" Output Receiver DATA output is
13	RD+	Receiver Positive DATA Out (CML)	internally AC coupled and series terminated with a 50Ω
		(CIVIL)	resistor.
			This pin should be connected to a filtered $+3.3V$ power
15	VccR	Receiver Power Supply	supply on the host board. See Figure 3.Recommended
			power supply filter
			This pin should be connected to a filtered +3.3V power
16	VccT	Transmitter Power Supply	supply on the host board. See Figure 3.Recommended
			power supply filter
		Transmitter Positive DATA In	Logic "1" Input = Light on Transmitter DATA inputs are
18	18 TD+	(CML)	internally AC coupled and terminated with a differential
		(CIVIL)	100Ω resistor.
	m	Transmitter Negative DATA In	Logic "0" Input = Light on Transmitter DATA inputs are
19	TD-	TD- (CML)	internally AC coupled and terminated with a differential
			100Ω resistor.

Typical Application Circuit

Package Outline

Regulatory Compliance

Feature	Test Method	Performance		
Electrostatic Discharge (ESD)	MIL-STD-883C Method	Class 1 (> 1500 Valta)		
to the Electrical Pins	3015.7	Class 1 (> 1500 Volts)		
Electrostatic Discharge (ESD)		Typically, no damage occurs with 15 kV when the		
to the Duplex LC Receptacle	Variation of IEC 61000-4-2	duplex LC connector receptacle is contacted by a		
to the Duplex LC Receptacle		Human Body Model probe.		
	CISPR22 ITE Class B			
Electrostatic Interference (EMI)	EN55022 Class B	Compliant with standards		
	FCC Class B			
	IEC61000-4-3 Class 2	Typically show no measurable effect from a 3V/m		
Immunity	EN55024	field swept from 80 to 1000MHz applied to the		
	EN33024	transceiver without a chassis enclosure.		
		Less than 1000 ppm of cadmium, lead, mercury,		
RoHS Compliance		hexavalent chromium, polybrominated biphenyls,		
		and polybrominated biphenyl ethers.		

Product Code	Center Wavelength(nm)
RTXM228-391	1471
RTXM228-392	1491
RTXM228-393	1511
RTXM228-394	1531
RTXM228-395	1551
RTXM228-396	1571
RTXM228-397	1591
RTXM228-398	1611